Time-Scale Invariant Audio Watermarking Based on the Statistical Features in Time Domain
نویسندگان
چکیده
In audio watermarking, the robustness to desynchronization attacks such as TSM (Time-Scale Modification) operations, is still an open issue. In this paper, both mathematical proof and experimental testing show that the histogram shape (represented as the relative relation in the number of samples among three different histogram bins) and the audio mean are two robust features to the TSM attacks. Accordingly, a multi-bit robust audio watermarking algorithm based on the two statistical features is proposed by modifying the histogram. The audio histogram with equal-sized bins is extracted from a selected amplitude range referred to the audio mean, and then the relative relations in the number of samples among groups of three neighboring bins are designed to carry the watermark by reassigning the number of samples in the bins. The watermarked audio signal is perceptibly similar to the original one. Simulation results demonstrated that the hidden message is very robust to the TSM, cropping, and a variety of other distortions in Stirmark Benchmark for Audio.
منابع مشابه
Segmenting Histogram-based Robust Audio Watermarking Approach
Based on the invariant features and data distribution in time domain before and after attacking on the audio, it is clearly that the standard variance shows good invariant statistical feature. The relation of four consecutive bins in a histogram maintains change less than 5%. Then, a general data selection approach, which meets the demands of normal distribution and other distributions, is crea...
متن کاملنهانکاوی صوت مبتنی بر همبستگی بین فریم و کاهش بازگشتی ویژگی
Dramatic changes in digital communication and exchange of image, audio, video and text files result in a suitable field for interpersonal transfers of hidden information. Therefore, nowadays, preserving channel security and intellectual property and access to hidden information make new fields of researches naming steganography, watermarking and steganalysis. Steganalysis as a binary classifica...
متن کاملA Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملSelf-synchronization for spread spectrum audio watermarks after time scale modification
De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/optimize. This paper addresses desynchronization for blind spre...
متن کاملScale estimation in two-band filter attacks on QIM watermarks
This paper presents a scheme for estimating two-band amplitude scale attack within a quantization-based watermarking context. Quantization-based watermarking schemes comprise a class of watermarking schemes that achieves the channel capacity in terms of additive noise attacks. Unfortunately, Quantization-based watermarking schemes are not robust against Linear Time Invariant (LTI) filtering att...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006